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Abstract. A formalism for the temperature-dependent dynamical magnetic spin sus- 
ceptibility of d-band metals is developed in the framework of the generalised non-local model 
potential approach. Using the Shaw-Harrison model wavefunction transformation the mag- 
netic spin susceptibility is separated into two parts: one is caused by the non-nodal character 
of the modelwavefunction (i.e. the free-electroncontribution) and theother by the depletion 
hole associated with the ion core. The latter is responsible for the Bloch character of 
conduction electrons and includes the s-d hybridisation effects in the d-band metals. The 
depletion hole contribution IS calculated by two different approaches: the first is exact 
depletion hole approach and the second the averaged depletion hole approach. The cal- 
culations are performed for the spin susceptibility of V metal. The values of the depletion 
hole contribution in both approaches are found to be nearly the same quantitatively as 
well as qualitatively and are about 46% of the free-electron value. The spin susceptibility 
decreases and the peaks are broadened with increase in the temperature. The calculated and 
the experimental values of bulk magnetic spin susceptibility show reasonably good agreement 
and emphasise the importance of the depletion hole contribution. 

1. Introduction 

The d-band metals constitute a majority of elements in the periodic table and are of 
particular interest because of the peculiar behaviour of the d electrons (Marshall 1967, 
Doughlass 1975, 1976, Horton and Maradudin 1981). A frequency- and wavevector- 
dependent response function plays the central role in the study of many electronic 
properties of metals such as specific heat, resistivity, Lorentz number, ferromagnetism 
and superconductivity (Marshall 1967, Doughlass 1975 , 1976, Horton and Maradudin 
1981, Fay and Appel 1980). Therefore, a great deal of attention has been focused on 
studying the dynamical magnetic susceptibility-both spin and orbital contributions- 
of metallic systems as this can be directly compared with neutron scattering experiments 
(Lowde and Windsor 1970, Hebborn and March 1970, Mook et a1 1973, Mook and 
Tocchetti 1979, Lynn and Mook 1981). The various spin susceptibility calculations can 
be categorised into two groups: the first is the localised spin model in which electrons 
are assumed to be localised at each atom and the second is the itinerant-electron model 
in which the electrons are represented by Bloch waves. The suitability of each model 
depends upon the nature of the element under consideration. The large electronic 
specific heat and fractional number of Bohr magnetrons per atom suggest that the 
itinerant-electron model is advantageous for the d-band metals (Izuyama et a1 1963). 
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Neutron scattering experiments of the dynamical spin susceptibility of the d-band metals 
(Lowde and Windsor 1970, Mook and Tocchetti 1979, Lynn and Mook 1981) also 
support the itinerant-electron model. Johnson (1980) has shown, from the analysis of 
experimental positron annihilation data, that in the d-band metals a fraction of the d 
electrons have an itinerant character and the rest have a localised character. In V, Nb, 
Ta, Sc, Y, Ti and Zr  all the d electrons have an itinerant character (Johnson 1980) and 
the itinerant d electrons can readily exchange with the conduction electrons (Stearns 
1973,1978). 

The formal quantum theory of dynamical spin susceptibilityX'(q, w ,  T )  has already 
been formulated in the itinerant-electron model (Izuyama et a1 1963, Hebborn and 
March 1970) but its evaluation for d-electron metals is characteristically difficult. Here 
4 ,  w and T are the field wavevector, frequency and temperature, respectively. The 
temperature-independent spin susceptibility xo(q, w )  = Xo(q, w ,  0) for the d electrons 
has been calculated by many workers (Lowde and Windsor 1970, Hebborn and March 
1970, Diamond 1972, Liu 1976, Pickett and Allen 1977, Singh and Prakash 1977, Singh 
eta1 1977,1980, Sokoloff 1978, Stenzil and Winter 1985,1986). A number of researchers 
(Doniach and Engelberg 1966, Shimizu et a1 1962, Rivier and Zuckermann 1968) have 
emphasised the importance of the temperature dependence of xo(q, w ,  T ) .  The first 
attempt to incorporate this improvement was made by Kaiser and Doniach (1970) who 
gave a low-temperature expansion of xo(q, w ,  T ) .  Subsequently a few attempts have 
beenmade tocalculateXo(q, CO, T )  forparamagneticsubstances (Jullienetaf 1973,1974, 
Singh et a1 1981) but these calculations do not properly include the Bloch character of 
the electrons. In this paper, we formulate a model potential theory for the temperature 
dependence of the dynamical magnetic spin susceptibility of paramagnetic d-band metals 
in the itinerant-electron model which takes care of the Bloch character of the conduction 
electrons. The plan of the paper is as follows. In section 2, we give the necessary theory 
for the temperature-dependent magnetic spin susceptibility of the d-band metals. The 
formalism is applied to calculate the magnetic susceptibility of paramagnetic V. The 
results are presented and discussed in section 3. Finally, conclusions are drawn in 
section 4. 

2. Theory 

The general expression for the dynamical magnetic spin susceptibility of a paramagnetic 
metal in the random-phase approximation (RPA) is given by the well known expression 
(Hebborn and March 1970) 

(1) 

where 

and 

M ( k ,  4 )  = I ( V k ( T ) /  exp(-i4.r)lvjlk+q(r))I2. (3) 
Ek is the energy eigenvalue corresponding to the Bloch state 2jlk(r) with wavevector k .  
pB is the Bohr magnetron, g is Lande's splitting factor and E is a positive infinitesimal 
corresponding to the adiabatic switching on of a perturbing magnetic field. The function 
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L(k ,  q, o, T )  describes the band-structure effects and M ( k ,  q)  gives the effect of overlap 
matrix elements. The summation in equation ( 1 )  is over all occupied electronic states k .  
f ( E k ,  T )  is the Fermi-Dirac distribution function given as 

f ( E k ,  T )  = [I1 + exp{[Ek - EF(T)]/kBT)l-l. (4) 
Here kB is the Boltzmann constant and E,( T )  is the temperature-dependent chemical 
potential which can be determined by the conservation of the number N of electrons in 
the conduction band as 

The factor of 2 takes into account the spin degeneracy in a paramagnetic metal. The 
chemical potential at absolute zero is equal to the Fermi energy E,, i.e. EF(0) = EF = 
kBTF, where TF is the Fermi temperature. From now on we use the units m = ti = kB = 
1 ,  where m is the free-electron mass. We shall solve equation (1)  for xo(q, w ,  T )  by two 

approaches (the exact depletion hole (EDH) approach and the averaged depletion hole 
(ADH) approach) using the non-local model potential theory. 

2.1. Exact depletion hole approach 

Equation (1)  forXO(q, o, T )  involves the true energy bands and the corresponding Bloch 
states and these can be determined from the one-electron Bloch wave equation 

[-(1/2m*>v2 + I q k ( r ) )  = I vk(r))* ( 6 )  
Here m* is the effective mass of the electrons, which includes band effects, and V(r)  is 
the crystal potential. The true Bloch wave equation can be transformed into a model 
wave equation 

[-(1/2m*)V2 + V d E ,  41 I ( P k ( 4 )  = E k  I Y k ( 4 )  (7)  
where 1 q k ( r ) )  is the model wavefunction and VM(E, r )  is the non-local (energy-depen- 
dent) model potential and is sufficiently general to include the model potential of Heine 
and Abarenkov (1964) (Animalu 1973) and the transition-metal pseudopotential of 
Harrison (1969). In the non-local model potential theory, Shaw and Harrison (1967) 
gave a model wavefunction transformation defined as 

1 v k  (4) = ( 1  - avM/aE) I V k k 4 )  (8) 
where the energy derivative aVM/aE of the model potential has the properties of a 
projection operator, i.e. 

(dVM/dE)2 = aV,/aE. (9) 
In the d-band metals, equation (8) holds provided that the pole in V,  at E = Ed (d-band 
energy) is handled appropriately by replacing (Ed - E)-'  by (Ed - E + i;Wd)-' where 
w d  is the d-band width. For simplicity, I qk(r ) )  can be taken to be a plane wave defined 
as 

where SZ is the crystal volume. Using equations (8)-(10) and the properties of Bloch 
waves in the Wigner-Seitz approximation, one gets 

Icpk(r)) = S Z - ' / ~  exp(ik.r) = Jk) (10) 

( ~ k ( r ) l e x P ( - i q . r ) l ~ k + ~ ( ~ ) ) =  1 -(k+qlaV, /aElk+q) .  (11) 
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Substituting equation (11) in equation ( l ) ,  we get 

where 

Y ( k + q ) = P ( k + q ) + a l P ( k + q ) / ’  (15) 

P(k + 4 )  = (k  + 4 )  - 2(dVh4/8E)Ik + 4). (16) 

and 

x ! (q ,  o, 7’) is the free-electron part of the magnetic spin susceptibility and is exactly the 
same expression as obtained by Hebborn and March (1970) and x$ , (q ,  w ,  T )  is the 
depletion hole contribution. y ( k  + q)  is called a depletion hole and is analogous to an 
orthogonalisation hole in the orthogonalised plane-wave theory. It should be noted that 
y (k  + q)  gives the effect of overlap matrix elements and is a function of both k and q. 
Using the Heine-Abarenkov model potential for the d-band metals the function P(k + q) 
has been calculated by us (Singh and Prakash 1981) and is given as 

where 

8n dA, R~ 

Q 
P, (k+q)=- (21+  1)-I  [ j , ( Ik+qIr ) I2r2dr .  

d E  0 

RM is the model radius and j,( 1 k + q I r )  is a spherical Bessel function of order I .  dA ,/dE 
are energy derivatives of potential well depths A,(E) for 1 = 0 , l  and 2. dA,/d E for 1 = 
0 and 1 are calculated in the same way as by Singh and Prakash (1981) and dA2/dE is 
given as 

dA*/dE  = A ~ ( E F ) ( E F  - Ed)/[(Ed - E)* + (&Wd)2]. (19) 
The singularity at E = Ed is handled by using the t-matrix method. From equations (17) 
and (18) it is evident that P(k  + q)  and therefore y ( k  + q)  have a finite value at 1 qI = 0. 
In the parabolic band approximation the limiting value of Xo(q, U ,  T )  can be calculated. 
It can straightaway be proved that, at 141 = w = T = 0, 

X : ( o ,  0,o) = Xr = ig2,UiN,(EF) = i g 2 ~ i ( ~ * k F S 2 / 2 n 2 )  (20) 

XOdp(O,O, 0) = Y o X f p  (21) 
where x f p  is the Pauli spin susceptibility for free electrons and Nf(EF) is the free-electron 
density of states (DOS) at E F  for single spin. Here yo is the value of y ( k  + q)  at 141 = 0 
obtained by summing over all k-values in equation (14). The total Pauli spin suscepti- 
bility for a metallic system becomes 

x p  = (1 + Y 0 ) X f p .  (22) 
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To compare the free-electron and depletion hole contributions to the spin sus- 
ceptibility, we define the reduced susceptibility as 

x o ( 4 ,  w, T )  = xO(q ,  0, T) /X8(0 ,0 ,0)  

= Z(4, 0, T )  + a&> 0, T ) .  (23) 
In this way, x q, w, T )  is normalised to unit at I q I = w = T = 0. Therefore the relative 

and imaginary parts of ?(q, w, T )  can be separated using the identity 
magnitude of -% x dp (q ,  0, T )  with respect to $(q, U ,  T )  can be readily found. The real 

lim[l/(x * ie)] = l/x Tin@). (24) 
€+ 0 

Therefore the imaginary part of Z(q, w ,  7') from equations (13), (23) and (24) can be 
written as 

Transforming the summation into an integration and solving it analytically, one obtains 

Im Z(q, 0, = (n/2)(T/qoF) ln~{exp(o/T)  

+ exp[e(q, w,  mm + e x p w  U ,  T)/TIH 

&(q, 0, T )  = (1 /2m*)Im*w/ lqI  + / q / / 2 ( 2  - 

(26) 

(27) 

where 

and oF = kF/m* is the Fermi velocity. In equation (14) for xjp(q, w, T )  the angular 
integral can be solved in the same manner as for xy (q,  U ,  T )  but the analytical integration 
over k is rendered incalculable because y (k  + q)  itself is in the integral form. The 
imaginary part of G(q, U ,  T )  becomes 

The imaginary part of the total susceptibility p(q, w, T )  is the sum of two contributions 
given by equations (26) and (28 ) ,  i.e. 

Im xo(q ,  w, T )  = Im x : ( q , w ,  T )  + Im Z g q ,  U ,  T ) .  (29) 
The real part of p(q, w ,  T )  can be calculated using the Kramer-Kronig relation 

Re  p(q, w, T )  = dw '  

Substituting equation (29) in equation (30), we write 

Re p(q, 0, = Re Z(q, w, T )  + Re S C q ,  w, TI .  

2.2. A ueraged depletion hole approach 

In the derivation of equation (28) the depletion hole y(k + q) is a function of both k and 
q. Shaw and Harrison (1967) defined ADH by summing over all the occupied electronic 
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states as 

Zis thevalencyof the metallic system. The ADH y(q ,  T) becomes temperature dependent 
via the Fermi distribution function. Using equation (15) in equation (32) and simplifying 
by changing the summation into integration, we get 

Y(47 T )  = P(47 T )  + E(q3 T )  (33) 
where 

p(q, T )  and E(q, T )  give the first- and second-order contributions, respectively, to 
y(q, T ) .  At absolute zero temperature we get the same expression for ADH as obtained 
by Singh and Prakash (1981). 

Using y(q,  T )  instead of y ( k  + q) in equation (14) for x j p ( q r  o, T ) ,  we write 

xOdp(q,o, T )  = k 2 P ; Y ( q ,  7-1 E - 0  l i m p  k L ( k  4, (3, T I )  = y(q7 T)x%q,  o, T ) .  (36) 

Therefore in the ADH approximation the total spin susceptibility from equation (12) 
becomes 

x0(4 ,  U ,  T )  = [1 + 7447 T)IXX(4, 0, T )  

x p  = [1 + y(0 ,O) lx~ .  

~m xO(q, 0, = [ I +  y(q,  Im Z(q,o, T )  

ReXOq, 0, T )  = [1 + Y(4 ,  7-11 Re Z(q, 0, T ) .  

(37) 

(38) 

and, in the limit I q I = o = T = 0, it reduces to the Pauli spin susceptibility xp given as 

The real and imaginary parts of p(q, U ,  7') in the ADH approximation are given as 

(39) 

Re z(q, o, T )  is obtained from Im z(q, o, T )  using the Kramer-Kronig relation, 

Table 1. Model potential parameters for V metal in atomic units taken from Singh et a1 
(1980); kd is the wavevector for the d band of V metal. 

Z 5.0 
m* 2.2 
k, 1.164 
R M  1.6 

AdEF) 2.9 
kd 0.64 
wd 0.24 

dA,/d E 1.56 

Rfl (atomic volume) 93.9 

dAfl/d E 0.0 
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It should be pointed out that, if a local model potential is used in place of the non- 
local potential, y(q, T ) ,  y ( k  + q)  and hence x $ ( q ,  w ,  T )  reduce to zero and the con- 
ventional free-electron metal theory for xo(q, o, T )  is retrieved (Hebborn and March 
1970). Therefore, xOdp(q, w ,  T )  includes the non-local effects arising from the s,  p and d 
characters of the conduction electrons. It takes into account the resonant character of 
the d electrons (see equation (19)) which is analogous to the s-d hybridisation of the 
orthogonalised plane-wave pseudopotential theory (Harrison 1969). 

3. Results and discussion 

The formalism is applied to calculate xo(q, w ,  T )  for paramagnetic V metal where 
x', ( , U ,  T )  is expected to be large. The unique relation between E F ( T )  and T is 
obtained by solving numerically equation (5 ) .  The numerical calculation of xo(q, o, T )  
also requires knowledge of band-structure and model potential parameters. The effec- 
tive mass m* of the conduction electrons is estimated from the mass enhancement factor 
A = m*/m - 1, where A is taken to be 1.22from the muffin-tin calculations of MacDonald 
(1981) and Papaconstantopoulos et aZ(1977). The model potential and other physical 
parameters of V metal are given in table 1. Figures l(a) and l(b) show the ADH y(q,  7') 
as a function of q and T for V metal. These show that y(q ,  T )  decreases with increases 
in q and T.  At large values of q, y(q, T )  approaches approximately the same value at all 
temperatures. At small values of q, y(q,  7') exhibits a small peak which is due to the 
resonant behaviour of P2(k + q)  (see equations (18) and (19)). This peak is weakened 
with the increase of Tand finally disappears. Further it is found that, on decreasing W,, 
the magnitude and peak strength of P2(k + q)  and hence of y(q,  T )  increase. Therefore 
in metals with narrow d bands (e.g. ferromagnetic metals) the d-band contribution forms 
the major part of y(q,  T ) .  In V metal at q = T = 0, the depletion hole y(0,O) = 0.458; 
therefore it enhances the spin magnetic susceptibility. The d-band contribution to y(0,O) 
is 0.283 which dominates the s- and p-band contributions having a value 0.175. 

p ?  

I I I I 

0.5 1 I I I I I c I b )  

0.4 

0.3 - s - - 0.2 

0. I t E 
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Figure 2. I m z ( 9 ,  w ,  T )  versus w ,  evaluated in the EDH approach, for (a )  191 = 0.005 and 
(b )  191 = 0.05 au: curve A, T/T,  = 0; curve B, TIT, = 0.2; curve C ,  T/T,  = 0.4; curve D, 
TIT, = 0.6; curve E, TIT, = 0.8. 

p(q, w ,  T )  is calculated for paramagnetic V using both the EDH and the ADH 

approaches. Figure 2 shows Im p(q, w ,  T )  asafunction of w for selected values of q 
and T in the EDH approach. In general, Im x o ( q ,  w ,  T )  collapses and the peak is 
broadened with increase in T.  It should be noticed (figure 2) that, as the value of 14) is 
increased from 0.005 to 0.05 au, the range of w also increases in the same order while 
the shape of the I m p ( q ,  w ,  T )  curve remains nearly the same. Figure 3(a) shows 
a(q, w ,  T )  for three different valuesof W ,  at I q1 = 0.005 au and T/TF = 0.2. It is found 
that Im z(q, w ,  T )  changes only by a small amount near the peak position even with 
20% change in W,. Therefore in V metal the broadening of the peak and the decrease 
in magnitude of Im p(q, w ,  T )  is caused mainly by the Fermi distribution functions. 
Im G(q, w ,  T )  and Im &(q, w ,  T )  for 141 = 0.005 au and T/TF = 0.2, are shown sep- 
arately in figure 3(b)  to make a direct comparison between them. Both Im 8 ( q ,  w ,  T )  
and Im s ( q ,  w ,  T )  exhibit a peak at the same energy w = 0.15 eV. s ( q ,  w ,  T )  is 
finite over an appreciable energy range although less than that of g(q, 0, T ) .  It is due 
to the inclusion of s-d hybridisation which increases the d-band width and hence makes 
the d electrons quasi-localised. Singh et al(1981) calculated p(q, w ,  T )  for the d-band 
metals in the tight-binding approximation, neglecting the s-d hybridisation, and found 
the d-band contribution to be strongly localised to a small energy region. 

Im p(q, 0, T )  has also been calculated in the ADH approximation and is shown in 
figure 4 for J q /  = 0.005 au and at various T-values. It is found that the values of 
Im p(q, w ,  T )  are approximately the same in both the EDH and the AD:: approaches. 
As only s ( q ,  w ,  T )  differs in the t w y p r o a c h e s ,  therefore a more apparent com- 
parison can be made by comparing Im xip (4, w ,  T ) .  Figure 5 shows Im s ( q ,  w ,  T )  as 
a function of w and it is found that the two approaches yield approximately the same 
values along the entire energy and temperature range. Therefore, the temperature- 
dependent ADH approach gives correct results for the magnetic spin susceptibility. 



xo(q, w, T) of d-band metals 2223 

1.0- 

0.8- 
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- 

Figure3. (a )  ImX$(q, w ,  T ) ,  in theEDHapproach, as afunction of w for (a) 141 = 0.005 au 
and TIT,= 0.2: curve A, tW,=O.lLRyd; curve B,  I W d =  0.24Ryd; curve C, $W,= 
0.29 Ryd. ( b )  I m z ( q ,  w ,  T )  and ImX$,(q, w ,  T ) ,  in the EDH approach, as a function of w 
for IqI = 0.005 au and TIT, = 0.2. 

Re ?(q, w ,  T) as a function of w is shown in figure 6 in both the approaches. The 
results are shown only at two T-values at IqI = 0.005 au as the calculation of 
R e p ( q ,  w ,  T )  consumes much computer time. At particular q- and T-values, 
Re p(q, w ,  T) decreases rapidly withincreasing w ,  becoming negative with aminimum 
at w = 0.157 eV, and thereafter smoothly tends to zero with increasing U-values. It 
should be noted that the minimum in Re  ?(q, w ,  T )  occurs at the same energy at which 
the peak in Im?(q, w ,  T) is found (see figures 2 and 4). Both the approaches give 
approximately the same results for Re p(q, w ,  T ) .  As no experimental results on 
p(q, w ,  7') for V metal are available, therefore the comparison of the results as such is 
not possible, but one can study the limiting cases of ?(q, w ,  T )  and compare the trend 
of the results with the available experimental and theoretical information. 

Im ?(q, w ,  T )  given by equation (39) in the ADH approach reduces at absolute zero 
to 

Im w ,  7') = 11 + Y ( 4 1  Im z<q, U ,  T )  (40) 



2224 J Singh 

2 . 0  

- 1.5 
3’ * 
h 

- 
7% 

E 1.0 
w 

0.5 

0.1 0.2 0.3 ( 

w lev1 
- 

Figure 4. ImX0(9, w ,  T ) ,  evaluated in the ADH 
approach, versus w for 191 = 0.005 au: curve A, 
TIT, = 0;  curve B, TIT, = 0.2; curve C ,  TIT, = 
0.4; curve D, T/T,  = 0.6; curve E, TIT, = 0.8. 
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Figure5 Im z ( 9 ,  w ,  T )  versus w and Tfor fixed 
/qI = 0.005 au evaluated in the EDH (-) and 
ADH (- - -) approaches: curve A, T/T,  = 0; curve 
B, T/T,  = 0.2; curve C, TIT, = 0.4; curve D ,  
TIT, = 0.8. 
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Figure 6. Re ~ ‘ ( 9 ,  w ,  T )  versus w for 191 = 0.005 au evaluated in the ADH (-) and EDH 
(---) approaches: curve A, TIT, = 0;  curve B, TIT, = 0.2. 
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where 

I m z ( q ,  w ,  T )  = (n/8A)([l - (m*W/A - A)’]O[l - (m*W/A - A ) 2 ]  

- [I - (m*W/A + A > ’ ] O [ l  - (m*W/A + A ) * ] }  (41) 
and A = q/2kF,  W = w/2k$. Equation (39) for Re p(q, w ,  T )  reduces, at absolutezero, 
to 

Re  P(q, w ,  0 )  = [ I +  Y ( ~ ) I  ~e iT(q, U, 0 )  (42) 
where 

R e g ( q ,  w ,  0) = 1 + (1/8A)[l - (m*W/A - A ) * ]  

x lnl(1 - m*W/A + A)/ (1  + m*W/A - A)1 - (1/8A) 

x [I - (m*W/A + A ) 2 ]  h / ( l  - m*W/A - A)/(1  + m*W/A + A)/. (43) 

Equations (41) and (43) are exactly the same expressions as obtained by Hebborn and 
March (1970) and define the classical Lindhard function for free-electron metals. In the 
EDH approach the expressions for Re z(q, w ,  0) and Im z(q, w ,  0) are the same as 
given above but it is not possible to get an analytical expression for z(q, w ,  0). The 
results for Im p(q, 0, 0), evaluated in the EDH and ADH approaches, are shown in 
figures 2 and 4 and are approximately the same. Re p(q, w ,  0) in both approaches is 
shown in figure 6. 

The temperature-dependent static spin susceptibility p(q, 0, T )  is obtained from 
the Kramer-Kronig relation (30) by substituting w = 0 in it. In the ADH approach, 
p(q, 0, T )  is given as 

Xo(q,O, T )  = [1 + Y(4, T) IX:(q ,  0 ,  T )  

?(q, O, = + y(q, T)]jTF/T* (45) 

(44) 
and is a real quantity. It is not possible to obtain an analytical expression for 
z(q, 0, T )  but one can immediately obtain, for very high temperatures, 

If one neglects the depletion hole contribution, one obtains the usual Curie law for free- 
electron metals. Equation (45) therefore gives the Curie law for the d-band metals which 
show a departure from the usual Curie law. Shimizu (1981) pointed out that there is 
a deviation from the standard Curie law in all the paramagnetic and ferromagnetic 
substances due to spin fluctuations in an itinerant-electron model. At T = 0, equation 
(44) reduces to 

X o ( q , O , O )  = [1 + y ( 4 , 0 ) l Z ( q ,  030) 

z(q, 0,O) = 4 + (1/4A)(1 - A*) lnl(1 + A)/(l - A)/. 

(46) 

(47) 

with 

Equation (47) is the static Lindhard function for the free-electron gas and exhibits a 
Kohn anomaly (logarithmic singularity) at q = 2kF. p(q, 0, T )  calculated in the ADH 
approach, for the V metal is shown in figure 7. A A q /  = T = 0 ,  P(q, 0, T )  is equal to 
1 + y(O,O> = 1.458 while, in the EDH approach, x o ( q ,  0, T )  is equal to 1 + yo = 1.467 
which is very close to the above value. Therefore, the depletion holecontributes towards 
the Pauli spin susceptibility by about 46% of xp. At T = 0 K, x O(q, 0 ,  T )  exhibits a 
Kohn anomaly at q = 2kF (see figure 7 and equation (46)) which is weakened with the 
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Figure 7. (a )  p(q, 0, T ) ,  calculated in the ADH approach, versus 141: curve A, T/TF = 0;  
curve B, T/T,  = 0.2; curve C, TIT, = 0.4; curve D, T/TF = 0.6; curve E, T/T, = 0.8; curve 
& T / T F =  1.0; curve G,  T/TF = 1.2; curve H, T / T F =  1.4; curve I, T/TF = 1.6. (b )  
x U ( q ,  0, T ) ,  calculated in the ADH approach, versus TITF; curve A ,  191 = 0.005 au; curve B,  
1 q1 = 0.4 au curve C, I q /  = 0.8 au;  curve D, 1 ql = 1.4 au; curve E, 1 q1 = 2.0 au; curve F, 141 = 
3.0 au; ---, modified Curie behaviour, in descending order, for 141 = 0.005, 141 = 2.0 and 
/ q /  verylarge. 

increase in T and finally it disappears owing to the smearing of the Fermi surface, In 
figure 7 is also shown the Curie behaviour, given by equation ( 4 9 ,  for different q-values. 
Further in the present formalism the behaviours of s(q7 0, T )  and x(q, 0, T)  are 
found to be similar. At small T-values (ranging from 0 to 300 K), p(O,O, T )  decreases 
approximately linearly with increasing Tbut the decrease is quite small as found experi- 
mentally (Kreissman and Callen 1954, Akoh and Tasaki 1977). However, at low tem- 
peratures the thermal expansion must be taken into account to get the correct Tvariation. 

So far in the calculation of p(q, o, T )  the electrons are treated as non-interacting 
particles but actually these interact with each other, giving rise to exchange and cor- 
relation effects. The quantitative calculations of magnetic susceptibility require the 
inclusion of the exchange and correlation effects which enhance the magnetic sus- 
ceptibility. The exchange and correlation effects are difficult to deal with and therefore 
are incorporated in different approximations (Kohn and Sham 1965, Vosko and Perdew 
1975, Janak 1977). In the RPA the exchange-enhanced magnetic spin susceptibility is 
given as (Hebborn and March 1970) 

x (q ,o ,  T )  = X 0 h  w ,  T)/P - ( 2 / g 2 P L m  0, 731 (48) 
where Z(q, T )  is a q- and T-dependent phenomenological electron-electron interaction 
parameter. The exact dependence of Z(q, T )  on q and Tis  not known; therefore, it is 
estimated in different limiting cases (Doniach 1967, Allan er a1 1968, Singwi et a1 1970, 
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Janak 1977). In view of these uncertainties, Z(q, 7') is taken to be independent of q and 
T in the present investigations. The exchange-enhanced reduced spin susceptibility, 
therefore, becomes 

?(q, 0, T )  = ?(q, 0, T ) / [ 1  - j?(q, 0, T ) ]  (49) 
where I =  zNf(EF). In the limit q = w = T = 0, equation (49) gives the effective Stoner 
enhancement factor Seff as 

Seff = [1 f y(0,  0)] / [1  - IN(EF)] = s* f S,*p (50)  

N ( E F )  is the total DOS at EF. S& is the Stoner enhancement due to the depletion hole 
although S* also includes the depletion hole contribution indirectly through N(EF) .  
As the depletion hole contribution approaches zero, Seff reduces to the usual Stoner 
enhancement factor due to the free electrons and is given as 

Sf = 1/(1 - I). (54) 
From equation (50) it is evident that Seff > Sf in the d-band metals with a positive 
depletion hole contribution, as in V metal, and Seff < Sf in other metals with a negative 
depletion hole contribution. 

The exchange-enhanced static reduced spin susceptibility from equation (49) can be 
written as 

?(q,O, T )  = Xo(q,O, T ) / [ 1  - m q ,  0, 731. (55 )  
Figure 8 shows X(q, 0, T )  for V metal, as a function of T for Seff = 10 (hypothetical 
value). X(q, 0, T )  starts with avalue equal to Seff and decreasesvery rapidly withincrease 
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7 5  
- 
L 
0. 
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1; 5 0  

2 5  

0 
0 0.4 08 1.2 1.6 2 . 0  

T /  T ,  

Figure 8. i ( 4 , 0 ,  T ) ,  evaluated in the ADH 
approach, versus T/TF for different 1 ql-values 
with Seff = 10: curve A, 141 = 0.005 au;  curve B, 
19 j = 0.4 au; curve C, 1 4 1 = 0.8 au ; curve D, 14 I = 
1.4 au;curveE,  141 = 2.0 au;curveF,  141 = 3.0 au. 
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in T.  At very high temperatures it obeys the Curie law given by equation (45). The 
variation in X(q, 0, T )  !& T becomes less important for large q-values due to the 
decrease in the product Zx (q ,  0, T )  with increase in q. 

The bulk magnetic spin susceptibility is given by the limiting value of enhanced 
magnetic spin susceptibility x ( q ,  U ,  T )  at q = U = T = 0. It is, therefore, given as 

x(0,  0, 0) = X p / [ l  - zN(EF)]. (56) 
For V metal the experimental value of bulk magnetic susceptibility (Shimizu et a1 1962, 
Akoh and Tasaki 1977, Kreissman and Callen 1954), which includes both the spin 
susceptibility and the contributions from the core and orbital motion, is 
254.71 x emu mol-'. The orbital (Van Vleck) paramagnetism in the d-band metals 
is quite large (Kubo and Obata 1956, Hebborn and Place 1972) and in V metal it ranges 
from 75 to 200 x emu mol-' (Noer and Knight 1964, Clogston eta1 1962, Yasui and 
Shimizu 1971, Place and Rhodes 1971). Therefore, the spinsusceptibilityis the difference 
between the experimental and orbital susceptibilities, i.e. xspln = xexp - Xorb, and ranges 
from 54.71 to 179 x emu mol-'. In the theoretical estimation of xspln = x ( O , O ,  0) 
we take I = 0.026 Ryd for V metal from Janak (1977). It yieldsX,,,, = 78.41 x emu 
mol-' which falls well within the experimental range for spin susceptibility. With the 
above value of Z the effective Stoner enhancement factor Seff = 2.71, which is in reason- 
able agreement with itsexperimentalvalue (Knapp and Jones 1972) andother theoretical 
values (Janak 1977, Papaconstantopoulos et a1 1977, Stenzel and Winter 1986). S* and 
SZp are found to be 1.86 and 0.85, respectively. If the depletion hole contribution is 
neglected, xspln = 42.36 X emu mol-' and the Stoner enhancement factor Sf = 1.46, 
which are much less than their experimental values. Therefore in V metal the depletion 
hole plays a significant role. 

Let us examine, in general, what type of d-band metal favours the existence of 
ferromagnetism in the present formalism. It is known that any element for which 
ZN(EF) 1 should be ferromagnetic in nature (Stoner 1954, Vosko and Perdew 1975). 
It has been shown that ferromagnetic substances have relatively large values for I but 
the ferromagnetism is basically determined by the DOS (Janak 1977). In the d-band 
metals the d-band resonant scattering, which depends upon dA,/d E (see equations 
(17)-(19)), gives a major contribution to the depletion hole and, therefore, is mainly 
responsible for the existence of ferromagnetism. The depletion hole contribution and 
hence N(EF)  increase with decrease in W,. Hence the present formalism predicts the 
possibility of ferromagnetism in the metals with a narrow d band. Watson and Bennett 
(1978) and Kakehashi (1981) calculated the d-band widths of 3d, 4d and 5d series of 
metals and found it to be minimum near the end of the 3d series (e.g. near Fe, Ni and 
CO) but quite large for the 4d and 5d series. Therefore, the product ZN(EF) may be large 
enough for ferromagnetism to exist only at the end of 3d series and this favours the 
viewpoint of Janak (1977). 

4. Conclusions 

A model potential theory is developed for the temperature-dependent dynamical spin 
susceptibility xo(q, U, T ) .  The depletion hole is associated with the non-locality of the 
model potential and is studied by two different approaches: the EDH and ADH approaches. 
In the EDH approach both the k- and the q-dependence of the depletion hole contribution 
is included explicitly, but in the ADH approach the depletion hole contribution is summed 
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over all the occupied electronic states, which makes it temperature dependent. In 
this approach the depletion hole becomes independent of the vector k. The d-band 
contribution to the depletion hole has a resonant characteristic analogous to s-d hybrid- 
isation in the orthogonalised plane-wave pseudopotential theory (Harrison 1969) and 
gives amajor contribution to it. x o ( q ,  w, T ) ,  for Vmetal, is calculated in both approaches 
and strikingly the results are nearly the same. It supports the decouplingprocedure given 
by Shaw and Harrison (1967) according to which the band structure and the overalap 
matrix element parts can, separately, be averaged in k-space. The reasonably good 
agreement between the calculated and experimental values of magnetic spin suscep- 
tibility, in the present formalism, emphasises the importance of the Bloch character of 
the conduction electrons. One should note that the present formalism is valid for all 
temperatures provided that one can calculate EF( T )  reliably. In the end we would like 
to point out that the model potential theory can also be extended to the f-band metals 
provided that the pole at the f-band energy is properly handled. 
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